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1. Introduction

Nakagami distribution can be considered as a flexible lifetime distribution [1].
It is also widely considered in biomedical fields. Shanker et al. [2] and Tsui et
al. [3] use the Nakagami distribution to model ultrasound data in medical imaging
studies. This distribution is extensively used in reliability theory and reliability
engineering and to model the constant hazard rate portion because of its memory
less property.
The probability density function of the Nakagami distribution [4] is given by

f(x; θ, k) =
2kk

Γ(k)θk
x2k−1e−

k
θ
x2 ; x > 0, k > 0, θ > 0. (1)
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where θ and k are called scale and shape parameter respectively.
The joint density function of (1) is given by

f(x; θ, k) =
(2kk)n

(Γ(k))nθnk

n∏
i=1

x2k−1i e

−
k

θ

n∑
i=1

x2i
(2)

The maximum likelihood estimator of θ when k is known is given by

θ̂ =
1

n

n∑
i=1

x2i (3)

In Bayesian analysis the fundamental problem are that of the choice of prior dis-
tribution g(θ) and a loss function L(θ̂, θ). The squared error loss function for the
scale parameter θ are defined as

L(θ̂, θ) = (θ̂ − θ)2 (4)

The Bayes estimator under the above loss function, say, θ̂s is the posterior mean,
i.e,

θ̂s = E(θ) (5)

This loss function is often used because it does not lead to extensive numerical
computations but several authors (Ferguson [5], Berger [6], Zellner [7], Basu and
Ebrahimi [8]) have recognized that the inappropriateness of using symmetric loss
function. J. G. Norstrom [9] introduced an alternative asymmetric precautionary
loss function and also presented a general class of precautionary loss functions with
quadratic loss function as a special case. A very useful and simple asymmetric
precautionary loss function is given as

L(θ̂, θ) =
(θ̂ − θ)2

θ̂
. (6)

The Bayes estimator under precautionary loss function is denoted by θ̂p and is
obtained by solving the following equation.

θ̂p =
[
E(θ2)

] 1
2 . (7)

Let us consider three prior distributions of θ to obtain the Bayes estimators which
are given by
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(i) Quasi-prior: For the situation where the experimenter has no prior information
about the parameter θ, one may use the quasi density as given by

g1(θ) =
1

θd
; θ > 0, d ≥ 0, (8)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.

(ii) Inverted gamma prior: The most widely used prior distribution of θ is the
inverted gamma distribution with parameters α and β(> 0) with probability
density function given by

g2(θ) =
βα

Γ(α)
θ−(α+1)e−

β
θ ; θ > 0, (9)

The main reason for general acceptability is the mathematical tractability
resulting from the fact that the inverted gamma distribution is conjugate
prior for θ.

(iii) Uniform prior: It frequently happens that the life tester known in advance
that the probable values of θ lie over a finite range [α, β] but he does not
have any strong opinion about any subset of values over this range. In such
a case a uniform distribution over [α, β] may be a good approximation.

g3(θ) =
1

β − α
; 0 < α ≤ θ ≤ β. (10)

The object of the present paper is to obtain the Bayes estimators of θ using above
three prior distributions under precautionary loss function and to study their per-
formance.

2. Bayes Estimators under g1(θ)
The posterior density of θ under g1(θ), on using (2), is given by

f(θ/x) =

(
k

n∑
i=1

x2i

)(nk+d−1)

Γ(nk + d− 1)
θ−(nk+d)e

−
1

θ
k

n∑
i=1

x2i
; θ > 0. (11)

The Bayes estimator under squared error loss function comes out to be

θ̂s =
k
∑n

i=1 x
2
i

nk + d− 2
. (12)
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From equation (7), on using (11), the Bayes estimator of θ under precautionary
loss function is obtained as

θ̂p[(nk + d− 2)(nk + d− 3)]
1
2k

n∑
i=1

x2i . (13)

The risk function of the estimators θ̂s and θ̂p relative to precautionary loss function,

denoted by Rp(θ̂s) and Rp(θ̂p), respectively, are as follows.

Rp(θ̂s) = θ

[(
nk + d− 2

nk − 1

)
+

(
nk

nk + d− 2

)
− 2

]
(14)

Rp(θ̂p) = θ

[
[(nk + d− 2)(nk + d− 3)]

1
2

nk − 1
+

nk

[(nk + d− 2)(nk + d− 3)]
1
2

− 2

]
(15)

The risk function of the estimators θ̂s and θ̂p relative to squared error loss function,

denoted by Rs(θ̂s) and Rs(θ̂p), respectively, and are given by

Rs(θ̂s) = θ2
[
nk(nk + 1)

(nk + d− 2)2
− 2nk

(nk + d− 2)
+ 1

]
(16)

Rs(θ̂p) = θ2

[
nk(nk + 1)

[(nk + d− 2)(nk + d− 3)]
− 2nk

[(nk + d− 2)(nk + d− 3)]
1
2

+ 1

]
(17)

In general neither of the estimators uniformly dominates the other. For example,
if k = 1, n = 5, d = 1, then

Rs(θ̂s)

θ2
= 0.375 < 0.613 =

Rs(θ̂p)

θ2

Rp(θ̂s)

θ
= 0.25 < 0.31 =

Rp(θ̂p)

θ

If k = 1, n = 5, d = 5 then

Rs(θ̂s)

θ2
= 0.219 < 0.199 =

Rs(θ̂p)

θ2

Rp(θ̂s)

θ
= 0.625 < 0.539 =

Rp(θ̂p)

θ
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3. Bayes Estimators under g2(θ)
Under g2(θ), the posterior density of θ, using equation (2), is obtained as

f(θ/x) =

(
β + k

n∑
i=1

x2i

)(nk+α)

Γ(nk + α)
θ−(nk+α−1)e

−
1

θ

(
β + k

n∑
i=1

x2i

)
; θ > 0. (18)

The Bayes estimator under squared error loss function on using (18) comes out to
be

θ̂∗s =
β + k

∑n
i=1 x

2
i

nk + α− 1
. (19)

From equation (7), on using (18), the Bayes estimator of θ under precautionary
loss function is obtained as

θ̂∗p[(nk + α− 1)(nk + α− 2)]
1
2

(
β + k

n∑
i=1

x2i

)
. (20)

The risk function of the estimators θ̂∗s and θ̂∗p relative to squared error loss function
are given by

Rs

(
θ̂∗s

)
= θ2

[
nk(nk + 1) + 2nk

(
β
θ

)
+
(
β
θ

)2
(nk + α− 1)2

−
2
(
nk + β

θ

)
(nk + α− 1)

+ 1

]
(21)

Rs

(
θ̂∗p

)
= θ2

[
C2

{
nk(nk + 1) + 2nk

(
β

θ

)
+

(
β

θ

)2
}

− 2C

(
nk +

β

θ

)
+ 1

]
(22)

where C = [(nk + α− 1)(nk + α− 2)]−
1
2 .

The Bayes risk associated with estimators θ̂∗s and θ̂∗p relative to squared error loss
function are given by

rs

(
θ̂∗s

)
=

β2

(α− 1)(α− 2)(nk + α− 1)
(23)

rs

(
θ̂∗p

)
= β2

[
nk(nk + 1)C2 − 2nkC + 1

(α− 1)(α− 2)
+

2C(nkC − 1)

(α− 1)
+ C2

]
(24)

In this case the risk functions relative to precautionary loss function and the cor-
responding Bayes risks can not be obtained in closed forms.
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4. Bayes Estimators under g3(θ)
Under g3(θ), using (2), the posterior density of θ, is given by

f(θ/x) =

(
k

n∑
i=1

x2i

)(nk−1)

θ−nke

−
1

θ

(
k

n∑
i=1

x2i

)

Ig


k

n∑
i=1

x2i

α
, nk − 1

− Ig


k

n∑
i=1

x2i

β
, nk − 1


; 0 < α ≤ θ ≤ β. (25)

where, Ig(x, n) =

∫ x

0

e−ttn−1dt.

The Bayes estimator under squared error loss function is given by

θ̂∗∗s =



Ig


k

n∑
i=1

x2i

α
, nk − 2

− Ig


k

n∑
i=1

x2i

β
, nk − 2



Ig


k

n∑
i=1

x2i

α
, nk − 1

− Ig


k

n∑
i=1

x2i

β
, nk − 1




k

n∑
i=1

x2i (26)

From equation (7), using (26), the Bayes estimator of θ under precautionary loss
function is given by

θ̂∗∗p =



Ig


k

n∑
i=1

x2i

α
, nk − 3

− Ig


k

n∑
i=1

x2i

β
, nk − 3



Ig


k

n∑
i=1

x2i

α
, nk − 1

− Ig


k

n∑
i=1

x2i

β
, nk − 1




k

n∑
i=1

x2i (27)



Parameter Estimation of Nakagami Distribution Under Precautionary ... 261

The equations (26) and (27), can be solved numerically. In this case the risk
function and the corresponding Bayes risks can not be obtained in a closed form.

5. Conclusions
From the given example in section (2), it is clear that neither of the estima-

tors uniformly dominates the other. We therefore recommend that the estimator’s
choice lies according to the value of ‘d′ in the quasi density used as the prior dis-
tribution which in turn depends on the situation at hand.

The risk function and Bayes risks under the natural conjugate are dependent
on the population parameter θ and θ is not reparable, therefore, comparison could
only be done by using numerical techniques.

Also, it is clear that from the equations (26) and (27) that only numerical
solutions exist for the estimators θ̂∗∗s and θ̂∗∗p . In this case the risk functions and
Bayes risk cannot be obtained in closed forms. Thus, the comparison could only
be done after obtaining the results numerically, which depends on the value of the
parameter itself.
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